当前位置:首页 > 资讯 > 世界热文:每天都和时间序列打交道,我总结了这篇文章! 来源:程序员客栈 时间:2023-06-20 16:00:59 Datawhale干货 作者:戳戳龍,上海交通大学,量化算法工程师(相关资料图)前言? 平时工作中每天都在和时间序列打交道,对时间序列分析进行研究是有必要的? 分享和交流一些自己的在时序处理方面的心得,提供一些思路? 介绍时序的发展情况,以及目前业界常用的方法? 代码希望能模板化,能直接复制过去使用时序方法发展时间序列特征?series = trend + seasons + dependence+ error趋势? 时间序列的趋势分量表示该序列均值的持续的、长期的变化Df["ma20"] = Df["amt"].rolling(20).mean()周期性(季节性)季节时序图def plot_season(Df): df = Df.copy() # 计算每周属于哪一年 df["year"] = df["date"].dt.year # 计算每周为一年当中的第几周 df["week_of_year"] = df["date"].dt.weekofyear for year in df["year"].unique(): tmp_df = df[df["year"] == year] plt.plot(tmp_df["week_of_year"], tmp_df["amt"], ".-", label=str(year)) plt.legend() plt.show()周期判断?如果每隔h个单位,ACF值有一个局部高峰,则数据存在以h为单位的周期性from statsmodels.graphics.tsaplots import plot_acfplot_acf(Df["amt"], lags=500).show()自相关性自相关?自相关函数 autocorrelation function有序的随机变量序列与其自身相比较自相关函数反映了同一序列在不同时序的取值之间的相关性from statsmodels.graphics.tsaplots import plot_acf_ = plot_acf(Df["amt"], lags=50)偏自相关from statsmodels.graphics.tsaplots import plot_pacfplot_pacf(Df["amt"], lags=5)残差外部变量残差Prophet?官方文档:https://facebook.github.io/prophet/docs/quick_start.html#python-api原理模型结构?模型结构——关于时间的广义线性模型g(t):trend,用分段线性函数或逻辑增长曲线(logistic)拟合s(t):seasonality,用傅里叶级数拟合。可以叠加多个季节性,如weekly,yearly (s = s1+s2……)h(t):regressor,用线性函数拟合。可以叠加多个外部变量,如节假日、温度、活动(h = h1+h2+……):模型残差 不用拟合以上方程也可以写成乘法形式:乘法形式和加法形式可以相互转换,乘法形式两边取对数就是加法形式趋势分段线性函数?线性趋势函数分段线性趋势函数超参数,由用户给出分几段参数,根据历史数据拟合k:曲线增长速率m:曲线的截距逻辑增长曲线?函数展示:https://www.desmos.com/calculator/8pnqou9ojy?lang=zh-CN超参数C:渐近线一共分几段参数k:曲线增长速率m:拐点对应时间周期性?任何周期性函数都可以表示成傅里叶级数超参数:由用户给定傅里叶级数的阶数,越大,季节性曲线波动越大,越容易过拟合参数:由历史数据拟合、系数? 函数展示:(https://www.desmos.com/calculator/5prck2beq1?lang=zh-CN外部因素: 模型输入, 外部因素在时刻的取值Z可以是0-1变量 (e.g.是否是法定假日,是否是春节,是否有促销)也可以是连续变量 (e.g.产品价格, 温度,降雨量):线性回归系数算法流程1️⃣ 先设定表达式(超参数)2️⃣ 根据训练集数据求解参数实践发电耗煤预测df_train = Df[ (Df["date"]<"2022-01-01") & (Df["date"]>="2018-01-01") ]df_test = Df[ (Df["date"]>="2022-01-01")]def FB(data): df = pd.DataFrame({ "ds": data.date, "y": data.amt, })# df["cap"] = data.amt.values.max()# df["floor"] = data.amt.values.min() m = prophet.Prophet( changepoint_prior_scale=0.05, daily_seasonality=False, yearly_seasonality=True, #年周期性 weekly_seasonality=True, #周周期性# growth="logistic", ) m.add_seasonality(name="monthly", period=30.5, fourier_order=5, prior_scale=0.1)#月周期性 m.add_country_holidays(country_name="CN")#中国所有的节假日 m.fit(df) future = m.make_future_dataframe(periods=30, freq="D")#预测时长# future["cap"] = data.amt.values.max()# future["floor"] = data.amt.values.min() forecast = m.predict(future) fig = m.plot_components(forecast) fig1 = m.plot(forecast) a = add_changepoints_to_plot(fig1.gca(), m, forecast) return forecast,mforecast,m = FB(df_train)def FPPredict(data,m): df = pd.DataFrame({ "ds": data.date, "y": data.amt, }) df_predict = m.predict(df) df["yhat"] = df_predict["yhat"].values df = df.set_index("ds") df.plot() return dfdf = FPPredict(df_test.tail(200),m)申购赎回金额预测kaggle notebook[1]Purchase Redemption Data.zipimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport prophetfrom prophet.diagnostics import cross_validationfrom prophet.diagnostics import performance_metricsfrom prophet.plot import plot_cross_validation_metricimport warningswarnings.filterwarnings("ignore")data_user = pd.read_csv("../input/purchase-redemption/Purchase Redemption Data/user_balance_table.csv")data_user["report_date"] = pd.to_datetime(data_user["report_date"], format="%Y%m%d")data_user.head()data_user_byday = data_user.groupby(["report_date"])["total_purchase_amt","total_redeem_amt"].sum().sort_values(["report_date"]).reset_index()data_user_byday.head()申购#定义模型def FB(data: pd.DataFrame): df = pd.DataFrame({ "ds": data.report_date, "y": data.total_purchase_amt, })# df["cap"] = data.total_purchase_amt.values.max()# df["floor"] = data.total_purchase_amt.values.min() m = prophet.Prophet( changepoint_prior_scale=0.05, daily_seasonality=False, yearly_seasonality=True, #年周期性 weekly_seasonality=True, #周周期性# growth="logistic", )# m.add_seasonality(name="monthly", period=30.5, fourier_order=5, prior_scale=0.1)#月周期性 m.add_country_holidays(country_name="CN")#中国所有的节假日 m.fit(df) future = m.make_future_dataframe(periods=30, freq="D")#预测时长# future["cap"] = data.total_purchase_amt.values.max()# future["floor"] = data.total_purchase_amt.values.min() forecast = m.predict(future) fig = m.plot_components(forecast) fig1 = m.plot(forecast) return forecast,mresult_purchase,purchase_model = FB(data_user_byday.iloc[:-30])def FPPredict(data,m): df = pd.DataFrame({ "ds": data.report_date, "y": data.total_purchase_amt, })# df["cap"] = data.total_purchase_amt.values.max()# df["floor"] = data.total_purchase_amt.values.min() df_predict = m.predict(df) df["yhat"] = df_predict["yhat"].values df = df.set_index("ds") df.plot() return dfpurchase_df = FPPredict(data_user_byday.iloc[-30:],purchase_model)赎回#定义模型def FB(data: pd.DataFrame): df = pd.DataFrame({ "ds": data.report_date, "y": data.total_redeem_amt, }) df["cap"] = data.total_purchase_amt.values.max() df["floor"] = data.total_purchase_amt.values.min() m = prophet.Prophet( changepoint_prior_scale=0.05, daily_seasonality=False, yearly_seasonality=True, #年周期性 weekly_seasonality=True, #周周期性 growth="logistic", )# m.add_seasonality(name="monthly", period=30.5, fourier_order=5, prior_scale=0.1)#月周期性 m.add_country_holidays(country_name="CN")#中国所有的节假日 m.fit(df) future = m.make_future_dataframe(periods=30, freq="D")#预测时长 future["cap"] = data.total_purchase_amt.values.max() future["floor"] = data.total_purchase_amt.values.min() forecast = m.predict(future) fig = m.plot_components(forecast) fig1 = m.plot(forecast) return forecastresult_redeem = FB(data_user_byday)Bonus 时间序列特征工程https://www.heywhale.com/mw/project/63904f5658e3bea6a3e52800EDAimport sweetviz as svdef eda(df, name, target=None): sweet_report = sv.analyze(df, target_feat=target) sweet_report.show_html(f"{name}.html")def eda_compare(df1, df2, name, feature, target): feature_config = sv.FeatureConfig(force_text=feature, force_cat=feature) sweet_report = sv.compare(df1, df2, feat_cfg=feature_config, target_feat=target) sweet_report.show_html(f"{name}_compare.html")完整版请访问:https://www.wolai.com/stupidccl/5dqha79nnrPMf5xTAs6jUu参考资料[1]kaggle notebook: https://www.kaggle.com/code/stupidccl/time-serious-analysis-1/edit/run/107631286干货学习,点赞三连↓ 上一篇:两条腿走路,才能到达远方 天天观察 下一篇:最后一页 X 关闭 资讯 世界热文:每天都和时间序列打交道,我总结了这篇文章! Datawhale干货 作者:戳戳龍,上海交通大学,量化算法工程师前言? 平 程序员客栈 2023-06-20 两条腿走路,才能到达远方 天天观察 时间可能是唯一的铁律,世间一切是非对错都在时间的荡涤之下最终现了原 哔哩哔哩 2023-06-20 世界今热点:美团闪购“品牌零距离-走进美宜佳”落地广州 由美团闪购培训联合各品类业务举办的“品牌零距离-走进企业”培训活动 电商报 2023-06-20 国足再遭1重创:张玉宁连续手术,头号中锋接近赛季报销! 今天北京国安方面却传来噩耗,张玉宁将再次面临手术,重建韧带,这也意 茜子足球 2023-06-20 行业排行 1知识导航 浪特梦太阳镜算大牌吗 2清华博士非洲修电站 因为他,“内卷”成为网络热词 3内蒙古新增本土确诊病例3例 均在呼伦贝尔满洲里市 431省份新增新冠肺炎确诊病例67例 其中本土50例 5浙江新增本土确诊病例45例 其中宁波6例、绍兴39例 6广东新增本土确诊2例、本土无症状感染者2例 7警惕非法集资的四种新“马甲” 8北京今天最高气温6℃ 新一轮冷空气携大风降温将至 9网红娃娃“戏入人生”别太早 10那年今日 | 历史上的12月15日发生过什么大事?